Simulation SolidWorks

Nom1/Nom2

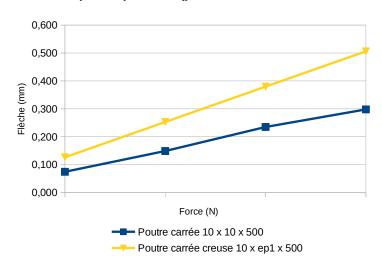
Objectif : Simuler et comparer les résultats de poutres en flexion par trois points.

1 – Simulations

Caractéristiques des poutres

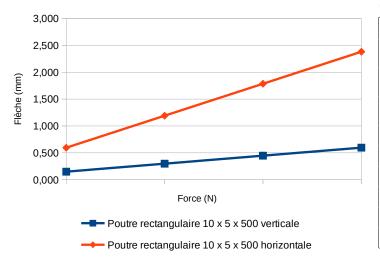
	Dimensions de poutre (mm)	Volume (mm³)	Masse (g) Acier	Masse (g) Alliage aluminium	
1	Poutre carrée 10 x 10 x 500	50 000	390	143	
2	Poutre carrée creuse 10 x ep1 x 500	18 000	140,4		
3	Poutre rectangulaire 10 x 5 x 500 verticale	25 000	195		
4	Poutre rectangulaire 10 x 5 x 500 horizontale	25 000	195		

Simulation des poutres en acier

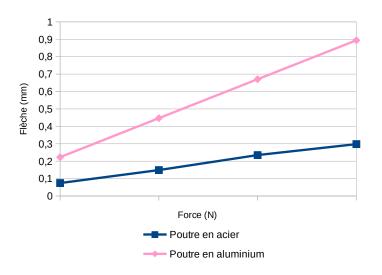

Poutre	5N		10N		15N		20N	
	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)
1	3,75	0,075	7,5	0,149	11,25	0,235	15	0,298
2	6,35	0,127	12,7	0,253	19,05	0,380	25,4	0,506
3	7,45	0,149	14,91	0,298	22,36	0,447	29,82	0,596
4	14,91	0,595	29,825	1,191	44,73	1,786	59,64	2,382

Simulation des poutres en alliage d'aluminium

Poutre	5N		10N		15N		20N	
	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)	σ (Mpa)	d (mm)
1	3,75	0,223	7,5	0,447	11,25	0,671	15	0,894


2 – Analyses

Courbes de la déformation fonction de l'effort


Comparaisons et commentaires

La flèche de la poutre est proportionnelle à la force extérieure exercée (charge). La poutre carrée creuse se déforme plus qu'une poutre pleine, mais ces types de sections creuses très couramment utilisées dans la construction de structures porteuses soumises à de la flexion, permettent d'obtenir des structures très résistantes ayant une masse réduite.

Comparaisons et commentaires

On constate qu'une poutre de section rectangulaire est beaucoup plus résistante et beaucoup moins déformable lorsque la plus grande dimension de sa section est orientée dans la même direction que la force exercée.

Comparaisons et commentaires

La flèche de la poutre dépend du matériau de la poutre. A géométrie identique (longueur et section) une poutre en acier est moins déformable (environ 3 fois moins) que celle en alliage d'aluminium. De plus on constate qu'à chargement égale les contraintes à l'intérieur de la poutre ne dépendent pas du matériau mais seulement de la géométrie.

3 - Calculs

Question 1 - Calculer les moments quadratiques des poutres n° 1, 3 et 4.

Poutre 1:
$$Iz = \frac{b.h^3}{12} = \frac{10.10^3}{12} = 833, 33 \ mm^4$$

Poutre 3: $Iz = \frac{5.10^3}{12} = 416, 66 \ mm^4$
Poutre 4: $Iz = \frac{10.5^3}{12} = 104, 16 \ mm^4$

Question 2 - Vérifier par calculs les déformations obtenues pour ces 3 poutres par simulation pour une intensité de l'effort que vous choisirez. Le module de Young (ou module d'élasticité longitudinale) du matériau sera relevé sur SolidWorks.

Poutre 1: d =
$$\frac{\text{F.L}^3}{48.\text{E.Iz}}$$
 = $\frac{10.500^3}{48.210\,000.833,33}$ = 0, 148 mm
Poutre 3: d = $\frac{\text{F.L}^3}{48.\text{E.Iz}}$ = $\frac{10.500^3}{48.210\,000.416,66}$ = 0, 297 mm
Poutre 4: d = $\frac{\text{F.L}^3}{48.\text{E.Iz}}$ = $\frac{10.500^3}{48.210\,000.104,16}$ = 1, 19 mm

Les résultats théoriques sont cohérents avec ceux issus de la simulation.